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Molecular dynamics simulation of oligopeptide chains reveals configurational subdiffusion at equilib-
rium extending from 10�12 to 10�8 s. Trap models, involving a random walk with a distribution of waiting
times, cannot account for the subdiffusion, which is found rather to arise from the fractal-like structure of
the accessible configuration space.
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Anomalous diffusive dynamics of atoms in biological
macromolecules has been the subject of considerable ex-
perimental and theoretical attention [1–10]. The distance
autocorrelation functions probed in single-molecule elec-
tron transfer experiments follow a subdiffusive, Mittag-
Leffler-like decay with a power-law tail decaying as
�t�0:51 [2] on time scales stretching from milliseconds to
seconds [3,4]. Neutron scattering experiments [5] and mo-
lecular dynamics (MD) simulations [6] have provided
evidence for anomalous diffusion existing also on the pico-
second and nanosecond time scales.

Several theoretical models have been applied to explain
the experimental and MD results. One model uses the
generalized Langevin equation with a memory kernel and
time correlated, ‘‘colored‘‘ Gaussian noise in a harmonic
potential [4]. Harmonic models of proteins that are gen-
eralizations of the Rouse chain have also been applied [7].
The above harmonic models were found to predict power-
law behavior, but restricted to�10�9 to 10�8 s time scales
[8], i.e., much shorter than observed in the electron transfer
experiments. An alternative to models with harmonic po-
tentials is trapping, i.e., involving multiple minima on the
energy landscape [11]. Trapping models incorporating dis-
tributions of effective escape rates have been used to
interpret both the 10�3 to 100 s time scale experimental
data [3] and 10�12–10�9 s MD data [9].

The trapping models are essentially equivalent to the
continuous time random walk (CTRW) description [12], in
which the random walker waits between two successive
jumps for a time taken from a waiting-time distribution
derived from a distribution of escape rates. CTRW in the
subdiffusive case is subject to aging, meaning it is not time
invariant and is a nonequilibrium, nonergodic model [12–
14]. Therefore, the question arises as to the usefulness of
applying CTRW (and trapping models) to equilibrium
simulation and experimental data. A further question con-

cerns the generality of the power-law kinetics, and, for
example, whether the subdiffusive behavior is seen in
biological systems smaller than proteins, such as peptides.

To address the above questions here MD simulations of
peptides in aqueous solution are analyzed. As peptides are
smaller than proteins, the simulations were able to be
performed on the microsecond time scale, i.e., a time scale
in which the dynamical quantities of interest have con-
verged, and over more than 2 orders of magnitude longer
than previous MD analyses of subdiffusion. The model
systems are �GS�nW peptides (where G � glycine, S �
serine, and W � tryptophan, n � 2, 3, 5, and 7) with
simulation lengths of 0.8, 1.0, 1.9, and 2:5 �s, respectively.
The simulation protocol is described in [15]. The MD
simulation data used were generated with the GROMACS

software package and the GROMOS96 force field [16], in the
NVT ensemble at 293 K with isokinetic temperature cou-
pling [17] to maintain constant temperature. For the analy-
sis translation and rotation were subtracted by fitting to a
reference structure. Similar results to those described here
were obtained by applying the present analysis to a
�-hairpin peptide in both explicit and implicit water (re-
sults not shown).

The simulation provides a set of the atomic trajectories
in the full configuration space of the peptide, and thus
furnishes, in principle, complete dynamical information.
It has been shown that, to simplify interpretation, the
essential dynamics of biomolecules can be reduced to
low-dimensional subspaces via principal component
analysis (PCA) [18]. PCA involves the diagonalization of
the symmetric atomic fluctuation covariance matrix C, the
elements of which are cij � h�xi�t��xj�t�i, where
�xi�t� � xi�t� � �xi is the deviation from the mean position
�xi.

The diagonalization leads to a new set of coordinates.
The eigenvalues give the contribution to the mean squared
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displacement (MSD). Lower PCs, i.e., with high eigenval-
ues, contain most of the diffusive dynamics [18,19]. With
decreasing eigenvalues the principal modes exhibit lower
variances and the shapes of the potentials of mean force
tend to be closer to harmonic [9,19].

For harmonic systems consisting of subunits of equal
mass the PCs correspond to the normal modes. In the case
of the �GS�nW peptides, and as is commonly observed for
proteins at physiological temperatures [18,20], the low
modes were found to be delocalized over the peptide
with strongly anharmonic potentials of mean force (results
not shown). This suggests that harmonic models are in-
appropriate for the description of the low PC dynamics.
The probability density functions for the lowest PCs were
found to contain a statistical error of � 1 kT, whereas the
higher modes are converged. The statistical error was
found to not influence the results presented here.

The potentials of mean force of the first and the second
halves of the simulations coincide with statistical errors in
the range of � 1 kT, and the trajectory can thus be con-
sidered as in equilibrium.

The quantity that provides the most direct access to
subdiffusivity is the MSD of the coordinate xp�t� corre-
sponding to PC p. For a single MD trajectory hx2

p�t�i is
calculated by time averaging, i.e., for a discrete trajectory
with N frames

 hx2
p�t�i :�

1

N � t

XN�t

��0

�xp�t� �� � xp���	2:

For the lower PCs the MSD follows a strongly subdiffu-
sive pattern hx2

p���i / �� extending for the lowest PCs over
four decades (10�12–10�8 s) until eventually saturating
[Fig. 1(a)]. To compare the exponents on the time scale
1–10 ps linear fits were performed to loghx2

p���i vs logt for
each mode [Fig. 1(b)]. The values of � are <1 for all
peptide lengths. The tendency of the exponents to decrease
with the mode number may be related to increased har-
monicity of the higher modes. The decrease is stronger for
the shorter peptides, indicative of fewer delocalized modes.

The asymptotic behavior of the waiting-time distribution
was obtained by mapping the dynamics along the principal
coordinates onto a two-state process (Fig. 2). The results
show a power-law behavior,w�t� � t�1��, again extending
to the 10 ns range. The exponent � lies in the range of 0.5
to 0.6 for the lowest modes.

/

FIG. 1 (color online). (a) MSD for different PCs of �GS�5W.
(b) Mean squared displacement exponents � for the four pep-
tides as a function of mode number, obtained by fitting a linear
function of logt to loghx�t�2i in the t range 1 to 10 ps using a
least-squares method. Error bars are smaller than symbol size.

FIG. 2 (color online). Waiting-time distribution for different
PCs of �GS�5W obtained by projecting time series of each PC
onto a two-state space. For PCs with multiminimum potentials of
mean force, i.e., the lowest, the two states were defined by
dividing the x space into the two parts either side of the position
of the highest barrier in the potential of the mean force. For the
higher PCs, which have only a single minimum, by symmetry
the space was divided at the position of the minimum. The
results were found to be independent of the precise location of
the partition. In order to improve statistics at long times, the data
were piecewise convoluted with filters of different sizes.
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We now examine whether CTRW can be applied to
analyze the PC dynamics. Provided w��� has a power-
law tail, ���1�� with �< 1, and provided that at t � 0
the structure undergoes a jump, then in CTRW the mean
number of jumps taken up to time t follows the power law
hN�t�i / t�, where the mean is an ensemble average, i.e.,
over different series of waiting times taken from w���. It
can then be shown that the longer the walker moves, i.e.,
the more traps are inspected, the higher the probability is of
finding a very deep trap and staying there for a relatively
long time [14]. The MSD in CTRW is proportional to the
number of jumps, so the MSD during the interval �t; t� �	
varies as hx2���i / hN�t� ��i � hN�t�i / �t� ��� � t�

[14]. The dependence of hx2���i on t for all �< 1 corre-
sponds to aging. For t
 � normal diffusive behavior,
hx2���i / t��1�, is seen. For larger �
 t the MSD will
be subdiffusive, i.e., hx2���i � �� [12].

To illustrate the aging effect, Fig. 3 shows hx2�t�i calcu-
lated with � � 0:5 in two ways, as an ensemble average
over 10 000 CTRW trajectories and as a time average. For
the ensemble average, initially hx2�t�i / t crossing over to
hx2�t�i /

��
t
p

. In contrast, the time averaged MSD has a
ballistic, t2 behavior for small t, and the long-time behavior
is linear in t.

The above discussion shows that the subdiffusion in
CTRW is an aging effect, requiring dependence on the
initial condition. Time averaging in CTRW removes the
initial condition dependence, and thus the subdiffusivity.

The MSD calculated from the MD simulation in Fig. 1(a) is
the outcome of time averaging. Therefore, CTRW cannot
explain subdiffusion in the MD MSD.

CTRW is equivalent to a trap model consisting of a
random walk between minima with a distribution of wait-
ing times. It is insufficient to explain subdiffusion at equi-
librium. Rather, subdiffusion at equilibrium arises from the
geometric and kinetic relationships between the regions
visited on the energy landscape. These relationships can be
obtained via discretization with a transition network
[21,22], in which the nodes correspond to regions in the
configuration space and the edges are weighted propor-
tional to the rates of transitions between the regions. Here,
we compute the weighted transition network correspond-
ing to the subset of diffusive modes in the simulation and
examine the topology of the network. To calculate the
transition network 10 000 points in the subspace of the
ten lowest PCs were randomly chosen, and are denoted
by fr�i�ji � 1; . . . ; 10 000g. A discretized trajectory was
generated by replacing each MD coordinate frame with
the number of the point that lies closest in the ten-
dimensional subspace, hence defining the regions.

From the discretized trajectory a transition matrix R��t�
can be calculated with the elements

 rij��t� �

P
t ��x�t� � j	��x�t� �t� � i	P

t ��x�t� � j	
;

��x	 being the Dirac delta function, t the discrete time, �t a
multiple of the discrete time step of the trajectory, and x�t�
the space-discretized trajectory. The elements rij��t� give
the relative probability of being at node i at time t� �t,
given that the system is at node j at time t. The matrix
depends on �t. If �t is assumed to be sufficiently large that
any memory effects arising from the degrees of freedom
not explicitly included are small, then the discrete dynami-
cal trajectory ��t�; t � 1; . . . ; n can be calculated such that
the occupation vector p � �p��� obeys p�t��t� �
R��t�p�t�. If the geometrical structures in configuration
space are crucial for the subdiffusive behavior, then the
MSD in the configuration space,

 hx2�t�i �
1

n� t

Xn�t

��0

�r���t� ���� r������	2;

must also be subdiffusive.
In Fig. 4 hx2�t�i, calculated for PC 1 on the basis of

transition matrices on different time scales, �t, is com-
pared with the corresponding MSD from the MD trajec-
tory. On all time scales subdiffusive behavior is seen. For
the shorter time scales (�t � 1 and 10 ps) the slopes differ
from the all-atom MD, due probably to non-Markovian
effects. However, on the 100 and 1000 ps time scales the
agreement is good. The same behavior is found for each of
the ten lowest PCs (results not shown). Changing the
transition matrix in such a way that all allowed transitions
are equally likely did not significantly affect the subdiffu-

FIG. 3 (color online). Normalized MSD of a CTRW with � �
0:5. The waiting times tw were generated from a uniform random
variable r 2 �0; 1	 using the transformation tw � r�1=� � 1.
Jump lengths were taken from a normal distribution. The red
line (‘‘ens‘‘) shows hx2�t�i calculated as an ensemble average
over 10 000 realizations of a CTRW. hx2�t�i calculated as a time
averaged quantity is given in magenta (‘‘time‘‘). The blue and
green lines (dashed: see legend) give the asymptotic power-law
behavior and serve to guide the eye.
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sion properties, thus emphasizing the importance of the
geometry of the configuration space.

The subdiffusion found in the generated data demon-
strates the importance of the geometrical properties of the
accessible volume in the configuration space. The presence
of subdiffusion on a transition network indicates that the
network behaves as a fractal. The fractal dimension df
characterizes the scaling of the mass of a fractal with the
linear distance, M� Rdf [23]. A power-law fit to the mass
scaling leads to df � 5:5, 6.0, 6.5, and 8.5 for �t � 1 ps,
10 ps, 100 ps, and 1 ns, respectively. From the probability
of finding a random walker at time t at the origin, P�t� �
t�ds=2, the corresponding spectral dimension follows as
ds � 2:8, 2.8, 2.4, and 2.4 and the exponent of the MSD
� for a random walk on the transition networks is � � 0:7,
0.7, 0.6, and 0.45. The discrepancy between df and ds=� of
� 50% is likely to arise from the finite size of the transition
network.

The present analysis of the behavior of PCs in MD
simulations of �GS�nW peptides in aqueous solution shows
that the relaxation in the low PCs is subdiffusive, display-
ing power-law behavior over four decades in the time
domain. The behavior observed cannot be explained with
simple trap models, since it is not due to aging. Instead, the
fractal-like structure of the accessible volume in configu-
ration space is responsible for the subdiffusivity. This
structure is well represented using a transition matrix
approach. Future research is warranted into the degree of
generality of the present conclusions in biopolymer
physics.
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594 (2001).

[23] S. Havlin and D. Ben-Avraham, Adv. Phys. 36, 695
(1987).

FIG. 4 (color online). MSD of trajectories generated from the
transition matrix R��t� for different �t together with the corre-
sponding MSD from the original trajectory. The matrix R��t�
was derived from the �GS�5W trajectory in the subspace of the
first ten PCs.
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